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ABSTRACT

Numerical, experimental, and hybrid combinations of these methods,

were used to study plane contact problems.

The experimental program used moire interferometry to determine in-

plane displacement fields near the contact boundaries of pin-loaded

aluminum and graphite-epoxy plates. The experiments closely modeled two

dimensional behavior and introduced zero-thickness gratings (for the

aluminum plate). The experimental data were reduced by means of a

localized hybrid analysis which used the experimental displacement data

as input to a finite element analysis of selected zones of interest.

The stress distributions obtained were generally consistent with

those of published analytical and experimental studies but the detailed

frictional phenomena were found to be very localized and somewhat

irregular.

The composite plate program featured a failure analysis based upon

the experimentally determined stress distributions. These distributions

were combined with a maximum stress failure criterion to predict the

mode and location of the failure. The results of an earlier experiment

were used to assess the accuracy of a general finite element algorithm

for plane elastic problems. On the basis of this comparison refinements

to the solution methodology were made. Specifically this involved the

introduction of both static and dynamic co-efficients of friction.

Values for these were deduced from the experiment and closer agreement

between experimental and numerical stress distributions was obtained.

Further program reorganization was performed to improve the

computational efficiency. An algorithm is also presented (but not

implemented) to allow for severe deformation and cracking. This is

based upon the Eulerian-Lagrangian description of deformation.
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1 ABSTRACT (CONT'D)
The composite plate program featured a failure analysis based upon the experimentally

de ermined stress distributions. These distributions were combined with a maximum stress
failure criterion to predict the mode and location of the failure. The results of an
earlier experiment were used to assess the accuracy of a general finite element algorithm
for plane elastic problems. On the basis of this comparison refinements to the solution
methodology were made. Specifically this involved the introduction of both static and
dynamic co-efficients of friction. Values for these were deduced from the experiment and
closer agreement between experimental and numerical stress distributions was obtained.

Further program reorganization was performed to improve the computational efficiency.
An algorithm is also presented (but not implemented) to allow for severe deformation and
cracking. This is based upon the Eulerian-Lagrangian description of deformation.

A brief comparison of the latest experimental and numerical stress distributions is
presented. The agreement is generally good but dependent upon assumed values of the co-
efficients of friction in the case of shear stresses at the surface of contact.
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A brief comparison of the latest experimental and numerical stress

distributions is presented. The agreement is generally good but

dependent upon assumed values of the co-efficients of friction in the

case of shear stresses at the surface of contact.
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GENERAL INTRODUCTION

Contact stresses in pin-loaded isotropic and composite plates were

determined using experimental and numerical methods. State-of-the-art

moire interferometry techniques were used in the experimental program

which needed much refinement before satisfactory results were obtained.

These refinements or, rather, innovations appear to be, in themselves,

important contributions to the literature.

The finite element method was used in a numerical analysis of the

problem. Substantial development of modeling techniques was required

for the contact problem. New algorithms have been devised. The results

of the first series of experiments on an aluminum specimen were used to

fine tune the numerical analysis and highlight the need for further

refinement. A direct combination of the experimental and numerical

techniques was used in a hybrid study.

In this final report attention will be focused upon the latest

series of experiments and numerical analyses. They fall in two self-

contained sections and will be reported as such.

The experimental program presents two new studies. The earlier

investigation of the aluminum plate has been further developed to

provide a closer approximation to two-dimensional behavior. In

conjunction with this, shear-lag errors associated with a finite

thickness of the specimen grating have been removed by the development

of an etched grating on the specimen surface.

An experiment on a pin-loaded graphite-epoxy plate was also

performed. This specimen was loaded beyond initial failure.

A new method of data reduction - the localized hybrid analysis - is

presented. The method provided a convenient means of reducing the vast
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amounts of data provided by the experiments. The stress distributions

so obtained confirmed the general trends expected but also uncovered

unexpected localized phenomena. In the case of the composite plate the

stress distributions allowed a failure analysis which correctly

predicted the location of matrix cracking.

The section on the numerical studies describes refinement to the

algorithm for plane elastic contact problems. These include the

important modification of allowing both static and dynamic coefficients

of friction as opposed to the use of a single coefficient in earlier

studies. This has improved the model behavior and also involved a

substantial reorganization of the program methodology. Details of the

iteration technique needed to establish the contact zone have also been

improved and halting of the program execution has been eliminated. With

these refinements, better correlation with experimental results was

obtained.

The basic scheme used in tne numerical study is Lagrangian. A

further development for large deformation and fracture is proposed. A

method based on the Euler-Lagrangian formulation is described.

Given the parallel nature of the experimental and numerical

studies, it has not been possible to perform detailed comparisons of the

latest series of experiments and the refined numerical studies. Some

comments upon the interaction of the two approaches are made.
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EXPERIMENTAL STUDIES OF CONTACT STRESSES WITH FRICTION

D. Post,* R. Czarnek,+ J. Morton,* B. Hant and M. Y. Tsait
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT

The contact stress problem with friction has been studied
experimentally for pin-loaded aluminum and graphite-epoxy composite
plates. High sensitivity moire interferometry was used to provide full-
field displacement data on both sides of the plate in a final series of
experiments which were designed to ensure two-dimensional behavior. A
further innovation was the use of an etched (zero-thickness) grating for
the aluminum specimen.

The experimental data were reduced using a new approach termed the
localized hybrid analysis which employed moire displacement data as
input to a local region of interest which was modeled with finite
elements.

The experiments verified general trends for the contact stresses in
the literature but, in addition, localized phenomena were discovered.
These included very high gradients in the shear stresses near the
contact boundary and compressive hoop stresses which were strongly
dependent upon the sign of the shear stress.

The composite specimen showed local failures in two modes - bearing
and tension (matrix cracking). The location of the matrix cracking was
well predicted using the calculated stress distributions and a maximum
stress failure criterion.

U
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1. INTROOUCTION

Experimental, and hybrid studies have been conducted for aluminum-

to-aluminum contact and aluminum-to-graphite-epoxy.

The sponsored work has progressed to a satisfactory terminus.

Analysis of both experimental load-increasing and load-decreasing phases

of contact have been completed. Dissemination of the results has begun

at the AIAA Conference in April, 1988 1i. Several technical papers are

planned to present the abundant information from these studies.

The experimental analyses were fraught with unanticipated

difficulties. In the end, they were circumvented by advances in

experimental science that seem, in themselves, to be significant

contributions. These advances include etched aluminum high-frequency

specimen gratings, load balancing using two-sided observation of the

specimen, and a localized hybrid technique that can focus on any zone.

The primary object of the study was to learn the nature of

frictional affects and their role in contact stress problems. A two-

dimensional version of a pin-loaded plate was chosen for the study. A

secondary objective was to extract engineering information on the

behavior of such a joint. Matrix cracking and localized bearing failure

arose as especially significant behavior of the composite plate. This

report provides a description of the final experimental and analytical

studies, including techniques, analyses and results.
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2. DESIGN OF THE EXPERIMENTS

2.1 BACKGROUND AND CURRENT APPROACH

The experimental analysis was that of a thin plate with a circular

hole, with loading along the hole boundary by a disk having an initially

small clearance. Deformations were measured by moire interferometry,

which is a whole-field optical method for measuring in-plane

displacements, U and V, with high sensitivity [2]. Strains were

determined from the displacements, and stresses were calculated using

the specimen material properties.

A. Load Balancing and Two-Sided Observation

While loading conditions for previous experiments in this series

were carefully designed and executed [3,41, surprising deviations from

plane stress conditions were uncovered. Equilibrium of forces was

tested using stresses determined from the experiments. Equilibrium was

satisfied by experimentally determined stresses at a small distance from

the hole boundary -- typically 3 plate thicknesses or 1/4 the hole

diameter from the boundary -- but equilibrium was not verified using

stresses along the hole boundary. This must have been caused by

nonuniform contact loading across the thickness of the plate.

Special provisions were made in the current experiments to adjust

the loading to equalize its effect on the front and back surfaces of the

specimen. The plate and pin geometry is illustrated in Fig. 1. The pin

has the same thickness as the plate near the contact zone, but it is

flared on the non-contact side to accept loads on opposite sides of the

center plane. The loading arrangement, which is illustrated

schematically in Fig. 2, was designed to permit adjustment of the forces

I0



P1 and P2 as required to assure symmetrical loading across the thickness

of the plate.

How was symmetry assessed? High-sensitivity moire interferometry

was used to generate contour maps of the U and V displacement fields of

the plate, i.e., displacement components in the x and y directions,

respectively. In this work two moire interferometry systems were used

together, one to display displacement fields of the front side of the

specimen and the other to display displacements of the back side.

Symmetry through the specimen thickness was assessed by the equality of

the V displacement fields on front and back sides. The loading aparatus

was adjusted to give essentially equal front and back patterns.

B. Etched Gratings

Another issue that guided the design of the experiments related to

the specimen grating employed for the moire interferometry measurements.

In earlier experiments of aluminum-to-aluminum contact, the specimen

grating was applied by replication in the normal way [21, using an epoxy

adhesive as the replicating agent. The resulting grating was 25 um

(0.001 in.) thick, and while this is a small thickness, shear lag could

mask the true behavior at the contact interface. Cleanliness of the

contact interface was uncertain, too, inasmuch as excess epoxy could

contaminate the aluminum interface zone. To counter both problems in

the current work, relatively robust specimen gratings were etched into

the aluminum specimen. The shear lag was nullified by virtue of the

zero-thickness grating. Subsequently the hole was bored in the plate,

assuring a fresh, clean hole surface. The issue of contamination seemed

important because contaminants would influence the frictional behavior,
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altering the frictional parameters of the contact and even acting as a

lubricant.

This etching method could not be extended to the study of the

composite plate. The motivation was less compelling, however, since

contamination of the interface by the epoxy was less serious for the

graphite-epoxy specimen.

C. Hybrid Method

The method of analyzing the fringe patterns of displacement was

improved, too. Two approaches were employed in previous work:

In one, the displacement gradients were determined from the fringe

patterns using a method in which the fringe order at each point of

interest, plus the slope of the fringe through that point, were

extracted as raw data. Strains were calculated from the displacement

gradients and stresses were calculated from strains and material

properties [3].

In the other, a hybrid experimental/numerical method was used.

Experimentally determined displacement data along the hole boundary

were used in a mixed load and displacement boundary value formulation

of the finite element method. For each load level, the procedure

required iteration through the full load history from the initial

zero load condition [5].

These methods had significant disadvantages. For the first, the

measurement of fringe slopes was tedious and subject to large errors; it

was particularly difficult to extract the slopes with confidence near

the hole boundary, where the strains and fringe slopes changed rapidly.

For the second, the iteration through the load history compounded the

errors or uncertainties encountered at each load level.

12



The improvement for the current work was a localized hybrid method.

In it, any localized region could be analyzed using experimentally

determined displacements as boundary conditions for a finite element

analysis. Displacement data were sufficient, eliminating the need for

measured fringe slopes, and eliminating the need for iteration through

the load history.

2.2 EXPERIMENTAL METHOD: MOIRE INTERFEROMETRY

Moire interferometry is a relatively new technique, but it has

already been applied to the solution of several practical problems. An

extensive review is given in Ref. [2].

Moire interferometry responds only to geometric changes of the

specimen, and thus it is effective for diverse engineering materials,

including the currently important anisotropic and nonlinear materials.

It provides whole-field contour maps of in-plane deformation fields --

precisely the experimental counterpart to the primary output of

theoretical studies by finite element methods and related computer

analysis methods. The sensitivity of traditional geometric moire has

been inadequate for most engineering applications, but recent

developments in moire interferometry provide increased sensitivity by

nearly two orders of magnitude. Now, moire interferometry offers the

needed sensitivity and promises to be an important method of

experimental solid mechanics.

Moire interferometry is an optical method using coherent light and

featuring subwavelength sensitivity and high spatial resolution. Its

principle is depicted schematically in Fig. 3. In this method, a

crossed-line diffraction grating is replicated on the specimen and it

13



deforms together with the loaded specimen. A virtual reference grating

created by interference of two coherent beams A and B is superimposed on

the specimen grating. The specimen and reference gratings form a fringe

pattern which is a contour map of Nx , or the in-plane specimen

displacement U. Additional input beams C and 0 in the vertical plane

(not shown) produce the fringe pattern for the V displacement field.

The patterns are photographed with a camera focused on the specimen

surface.

The relevant equations are

f sin 

U, V N (2)f x f y

au I aNx (3)x ax f ax(3

aN

3V I y (4)
y ay f ay

aU + aV I aNx aN y(5)Yxy ay ax f a y- 3 x

where f is the frequency of the virtual reference grating, x is the

wavelength of the light employed, a is the angle of incidence (Fig. 3),

N is the fringe order at each point in the moire pattern and e and y are

normal and shear strains, respectively. In this work, f = 2400 lines/mm

(60,960 lines/in.).

The configuration of the optical system used in this work is

illustrated in Fig. 4. Beams corresponding to A, B, C and D (Fig. 3) -

illuminate the front side of the specimen to generate the U and V

14



displacement fields present on the front side. At the same time, beams

C' and D' (with central rays in the yz plane) illuminate the back side

to generate its V field. The insert in Fig. 4 shows beams C and C' as

they strike the specimen directly from the collimated beam, while

another portion of each collimated beam is reflected by plane mirrors to

form beams D and D'.

The laser employed here was an Argon Ion Laser operated at 150mW

and wavelength 514.5 nm. The plane of polarization was parallel to the

y axis. The polarizer in the camera path passed light with y

polarization. This was needed to filter the elliptical polarizations

created by mirror reflections in the three-dimensional paths. The two

cameras were adjusted for equal magnifications of 2.2. Kodak Technical

Pan sheet film, size 4x5 inches, was used. Exposure times were

approximately 1/8 seconds for the aluminum specimen, and 1/16 seconds

for the graphite-epoxy specimen (with its replicated grating of higher

diffraction efficiency).

2.3 LOADING SYSTEM

The experiment was conducted on a vibration isolating optical

table, with the optical equipment of Fig. 4 and the loading system of

Fig. 5 mounted on the table. The loading system consisted of a sturdy

steel frame, a loading and load measuring device and fixtures to engage

the specimen.

The loading device utilized two lubricated wedges. When one was

displaced laterally by manual operation of the loading screw, it

displaced the surrounding frame upwards. The linkage attached to the

specimen moved upwards, too, exerting a tensile load on the specimen.

15



The load was measured by means of electric resistance strain gages on

the narrow legs of the loading device. The load was reacted through the

pin and saddle by two cross-bars on the main frame, one behind the

specimen and one in front. The front cross-bar was adjustable as shown.

The main frame was attached to a base plate containing three

adjusting screws. The screws rested on the optical table and allowed

rigid-body in-plane and out-of-plane rotation of the specimen relative

to the optical system.

2.4 SPECIMEN GRATINGS

A. On The Aluminum Plate

For the aluminum plate, the specimen gratings were etched into its

surfaces before the hole was bored. First, the front and back surfaces

of the specimen were polished to a smooth, bright finish by buffing with

rouge. Then a positive photoresist (Shipley S1400-31 Photoresist

diluted with four parts of Type A Thinner) was applied by the drag

method illustrated in Fig. 6. With this method, a lens tissue is wetted

with the dilute photoresist and dragged at a slow uniform velocity

across the specimen. A uniform photoresist film less than a wavelength

thick was achieved; uniformity was essential in order to overcome

deleterious effects caused by light reflected from the bright aluminum

interface.

The photoresist was exposed to a 1200 lines/mm virtual grating.

The virtual grating was produced in a separate optical system that

caused two collimated beams of laser light to intersect in accord with

Eq. 1, where f = 1200 t/mm, a is the half-angle of intersection and k =

413 nm (using a Krypton Ion Laser). Two exposures were made on each

16



side, with 90 deg rotation between the exposures to produce crossed-line

gratings.

The photoresist images were developed by immersion in Shipley

Developer 352. The developer is a dilute solution of sodium hydroxide,

which is also an etchant for aluminum. The developer first dissolved 4
and removed the exposed zones of photoresist (zones of constructive

interference of the virtual grating). Upon penetrating to the

interface, the developer attacked the aluminum and so formed a crossed-

line grating in the aluminum.

The specimen was then clamped between acrylic plates and the hole

was machined in the specimen.

B. On The Graphite-Epoxy Plate

The conventional procedure [2) was used to produce gratings on the

graphite-epoxy specimen. First, a crossed-line grating mold was

prepared by exposing a high-resolution photographic plate to a 1200

%/mm virtual grating. A metallic film of aluminum was formed by vacuum

deposition (evaporation) on the mold. Then the g ing was replicated

on the specimen, following the steps depicted in Fig. 7. The adhesive

was a room-temperature curing epoxy. After removing the mold, a thin

(approximately 25 um) highly-reflective crossed-line grating was

produced on the specimen.

In this case, the hole was previously machined in the specimen.

During the epoxy curing process, the excess epoxy was repeatedly cleaned

from the hole boundary using a cotton swab dampened with alcohol; at the

gel stage, excess epoxy was removed with a sharp tool. After the epoxy

hardened, the hole boundary was scraped lightly as a final cleaning

step.

17



3. EXPERIMENTAL PROCEDURE

3.1 SPECIMEN LOADING

With the specimen installed in the loading fixture (Fig. 5), an

initial load of 25 pounds was applied to stabilize the aluminum specimen

(a 20 pound initial load was used for the composite specimen). The

optical system was adjusted to produce null fields: the U and V fields

on the front side and the Vb field on the back side, where the subscript

denotes the back side. Because of the initial load and imperfections of

specimen and reference gratings, they were not true null fields, i.e.,

they were not devoid of fringes, but the number of fringes across each

field was minimized.

The loads were increased in a systematic sequence and the U, V and

Vb moire fringe patterns were photographed for each load step. Prior to

recording the patterns, adjustments were made in an iterative fashion as

follows. The V and Vb patterns were observed on the camera screens.

Any rigid-body rotation of the specimen caused by the loading was

cancelled by rotation of the loading fixture through adjustments of its

base. Then fringes that crossed a line segment along the y axis were

counted and compared for front and back sides of the specimen. If they

were not equal (within about 1/4 fringe), the load was reduced to about

50 pounds (30 pounds for the composite specimen). The lever that

engaged the pin and saddle (Fig. 5) was adjusted and the load was raised

again to the target value. If the fringe counts in V and Vb fields were

not equal, the procedure was repeated until equality was achieved. Then

the moire patterns were photographed.

The load sequence is given in Fig. 8 for both specimens, for the

loading and unloading phases. The large circles denote load levels at

which the patterns were recorded, and the small circles indicate

18



observations in the iterative process. At higher load levels and in the

unloading phase, equal deformations of the front and back surfaces were

obtained without iteration, as indicated.

3.2 FRINGE PATTERNS AND FRINGE ORDER EXTRACTION

The fringe patterns were enlarged and printed photographically at

magnifications of about 5 times and 10 times. Representative U and V

patterns on the aluminum plate are shown in Figs. 9 and 10 for an

intermediate and high load level, respectively. Figures 11 and 12 give

examples for the composite plate. Fringe orders Nx and N werex y

established, as illustrated in Fig. 9. An extensive set of patterns is

reproduced in Appendix I.

While the fringes on the aluminum specimen are sufficiently well

delineated to extract fringe positions with high accuracy, they

exhibited more optical noise than those on the composite specimen. The

noise was caused by the inferior quality of the etched gratings,

compared to the replicated gratings on the composite. Further

development of the etching process is required to enhance the appearance

of the fringe patterns.

The jagged boundary of the composite plate is caused by local _

bearing failure of the composite, with elements of the outer ply

overriding the pin surface. The failure process is discussed in

subsequent sections. 6

Data were extracted from the fringe patterns by means of a

digitizing system. It consisted of a digitizing table, a cursor and a

microcomputer. The coordinates of fringe centers along the hole

boundary and other preselected lines were measured by electromagnetic
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fields built into the digitizing table. Using a magnifying lens for

observation, cross-hairs of the cursor were positioned visually at the

intersection of the fringe center and the preselected line, and the

coordinates of the cursor were tabulated by the microcomputer, Accuracy

of the digitizer was 0.001 in. on the scale of the photographic print,

or 0.0001 to 0.0002 in. on the scale of the specimen.

20



4. HYBRID METHODS OF DATA REDUCTION

4.1 COMBINATIONS OF MOIRE INTERFEROMETRY AND FINITE ELEMENT ANALYSIS

Moire interferometry provides full-field displacement data

corresponding to the in-plane components u(x,y) and v(x,y) on the

specimen surface. In many cases the strain and stress distributions are

required in the engineering analysis. The former are obtained from the

appropriate derivatives:

= 3u 3v and = lu + iv (6)
x 3 y y xy 3y ax

Once these are obtained the stress may be determined from knowledge of

the material constitutive law. The differentiation required to

determine the strains at some point may be performed manually (defining

the gradient in a small region) or, indeed, optically 161. A further
method of reducing the moire data is to use the finite element (or even

the boundary integral evaluation) method. In this section the basic

principles of the finite element method will be reviewed and methods of

combining moire interferometry and finite element analyses will be

introduced.

The finite element method of stress analysis is well established.

It allows the solution of many complex stress analysis problems through

an approximate numerical technique. Structural components are

discretized into a number of elements. The displacements within each

element are assumed to follow known functional relations (e.g. linear,

quadratic etc). The stiffness of each element is computed in terms of

the co-efficients of the displacement function and the material law for

the element. The stiffness of the structural component is formulated by

requiring equilibrium and compatibility at the nodes of the elements.
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The technique is, of course, a "stand alone" method of stress

analysis. A major problem, however, can occur in the specification of

the boundary conditions (forces and/or displacements). Another problem

which may arise is the requirement of a very large number of elements to

discretize a large body (when the real region of interest may be quite

small).

A hybrid approach to the pin-loaded plate problem has been used by

Heyliger [5]. In this, the moire displacement data were used around the

pin/plate boundary and the uniform remote stress condition applied.

Thus, when symmetry was involved, an entire half of the plate had to be

discretized and analyzed.

In order to propose further hybrid approaches, let us examine some

basic ideas behind the finite element method and highlight possible

combinations of photomechanics data and finite element analysis.

Following the notation of Reddy (71, the displacement within an element

may be written as

n
u = u. 4j (7)

and
n

v = v . (8)
j=1 .

where uj and vj represent the displacement at each of the n nodes of an

element and is one of n interpolation functions for a given element.

The strain within the element is, of course, obtained by

differentiating the displacement components u, v. Thus, for an element

(E} e = [DI [,Ie W e  9 (9)
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where [0] is the matrix of differential operators°3 0
3x

ay

-3y 3A

and A} e is a column vector ccntaining the nodal displacements,

e = 1 V "'" un  V n
iT (10)

Thus one approach to a hybrid of moire interferometry and finite

element analysis would be to use the fringe pattern data (for u and v

fields) to determine the displacements of the nodes everywhere in some

arbitrary region. The finite element (interpolation) analysis then

gives approximate strains within each element (for chosen orders of

interpolation function). That is, the finite element analysis is used

as a convenient tool for differentiating the fringe (displacement)

data. Of course, stresses may then be determired from the appropriate

material constitutive law.

Tnis approach may have merit 4n the cases Nhere there is a regional

variation in the material properties, such as plastic deformation or

local failure. However, it may become tedious unless automated.

Another approach is to follow the finite element analysis more

closely. After formulating element strain and stress behavior the

element stiffness is related to the nodal forces and displacements by

(K(e), (A(e) = rF(e) }  (11)

where [K(e)] Qf(e) [BTI e [Ci e [BIe dv (12).
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Here, [B] e = [D] [vl e and [CI e is the element constitutive matrix.

Usually the integration is performed numerically using Gauss-

Legendre quadrature. This consists of sampling values of a function at

special points within any given element, applying weighting functions

and summing over the element. These sampling points within the element

are known as Gauss points. The eight-node quadrilateral element shown

in Fig. 13 employs nine Gauss points. The most accurate results are

those at the Gauss points but usually the nodal values are of greater

interest. In the contact problem we are interested in the deformation

of the surface of contact so we need the stress components at the

contact boundary.

Following formulation of the element stiffnesses, the overall

stiffness matrix may be assembled by incorporating requirements of nodal

compatibility and equilibrium. A convenient, partitioned form, is

[[Kill [K 12  1 ( 1 } (Fl1
[K2 11 [K22 I{2 = j(F2 (13)

where {A 1 and (F2} represent known displacements and forces

respectively. Terms (A 2) and (FI} are unknown displacements and forces.
1

Thus a further local hybrid approach suggests itself. Let (A 1 be the

displacements of nodes around the boundary of some arbitrary region of a

pair of moire fringe patterns. These displacements are readily

determined at the location of the nodes. Within the region, the

resultants nodal forces {F2} are known (to be zero). The internal nodal

displacements (A 2} are then regarded as unknown and may be calculated

from

(A2} JK2 2 -1  (F2  - [K22  -I  [K2 1 1 {A} (14).
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The nodal forces along the boundary of the arbitrary region are given by

{FI} = ([KI ] - [K22] -  [K 2 1 ]) {A } + [K12] [K22 ]-  {F2} (15).

These calculations are performed routinely in the finite element

analysis.

The analysis above is presented to highlight an approach which will

be termed "the localized hybrid method," and to emphasize some

advantages and limitations. In the localized hybrid analysis the

material behavior of all elements within the chosen region must be known

even for the calculation of strains - that is, {A 2 } depends upon the

global and, in turn, the element stiffness matrices. This is to be

contrasted with the direct interpolation approach described earlier in

which strains may be calculated in regions of gross material non-

linearity (provided, of course, the appropriate strain-displacement

relationship is included in the formulation) . In the localized hybrid

method, since the moire data are available everywhere within the region,

subsequent comparisons of calculated and actual displacements can be

made. This provides vital checks of the accuracy of the analysis and

allows refinements to be made in the finite element mesh. Similarly the

interpolation approach must satisfy the additional requirement that the

internal interelement nodal forces satisfy equilibrium. The degree to

which this is achieved may be used as a measure of the accuracy of the

discretization or appropriateness of the interpolation functions.

Of the two approaches described above the localized hybrid method

is the most useful for present purposes.

In the localized hybrid analysis a further extension is possible.

In addition to specifying only the displacements of t. boundary nodes,
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internal nodal displacements may also be included. This is particularly

useful when there are high displacement gradients and good modeling is

desired without additional mesh refinement.

Before describing the application of the localized hybrid method to

the contact problem, it is appropriate to demonstrate the method and

examine the robustness or stability of the approach. To this end a test

case (which is close to the contact problem geometry) will be described.

AI

2
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4.2 TEST CASE: LOCALIZED HYBRID ANALYSIS

There are two main reasons for performing a test case for the

localized hybrid method for the contact problem. The first is that the

experimental displacements at the pin/plate boundary will be input into

the numerical analysis and the resulting stresses in this same region

are of primary importance. We need to determine the effect of

experimental error upon the accuracy of these stresses. Away from these

boundary nodes, at internal nodes, it would be expected from St.

Venant's Principle that the effects of errors in displacement will be

attenuated. The magnitude of probable errors in displacement are easily

estimated. The second objective is, then, to quantify the effect of

random errors of such a magnitude upon the calculated stresses. In

other words, what is the sensitivity of the technique expressed in terms

of stresses?

A region representative of that used in the experiment is shown in

Fig. 14. The region was first meshed and loaded as shown. The loads

were chosen to produce stresses of similar orders as those in the

aluminum plate experiment. The finite element analysis provided the

nodal displacements, stresses and strains everywhere in the region. It

will be observed that this example contains some distorted elements. _

Since this is a self-contained test case and our interest lies on the

curved, densely meshed boundary, element distortion is not important.

Next, the calculated displacements of the nodes on the boundary of

the region were input into a second finite element analysis. As

expected the forces from the first analysis were reproduced in the

calculation. However, suppose now that there are some errors in the

input displacements at the boundary nodes. These may be of two classes.
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In the first, there may be one relatively large error while the others

are precisely known. This may correspond to a counting error in the

fringe data reduction. In the second case, there may be random errors

associated with each nodal displacement value. This may correspond to

uncertainty in the estimation of partial fringe orders from the moire

data.

In this test case, separate analyses were performed with both types

of displacement errors. The magnitudes of the displacements and errors

were chosen to be typical of those which might occur in the moire

experiment. It is estimated that the largest interpolation error might

be one quarter of a fringe order (approximately 0.0001mm in

displacement). When values of displacements were modified to contain

random errors in the range -10- 4 mm to +10-4 mm and the calculation

made, there is hardly any discernible effect upon the stresses

calculated at the boundary (Fig. 15). That is, the points from the data

containing the displacement errors are virtually superimposed upon the

line from the force-input calculations.

Coarse or geometrical moire provides a much lower sensitivity than

moire interferometry. To illustrate the effect of a larger random error

of maximum value equivalent to 2.5 fringe orders the test case was run

again. This corresponds to a similar order of interpolation error which

might occur with a virtual reference grating of 240 lines/mm (still very

fine by geometric moire standards). The results indicate that the

general trend is preserved but there is a large fluctuation in the

stress values (Fig. 16). The errors are much more significant in the

shear stresses which are much lower than the normal stresses in this

calculation.
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Fig. 17 shows that a shear stress of the order of 5 ksi is readily

determined using the localized hybrid approach in conjunction with moire .

interferometry with a quarter fringe order maximum error and a virtual

reference grating of 2400 lines per mm. A coarser method of determining

displacements would not, however, be satisfactory in this case. A

further case showing a maximum shear stress of 1 ksi is presented in

Fig. 18. The trend is still apparent but fluctuations are of the order

of 0.25 ksi which are similar in magnitude to these in the 5 ksi example

(but these fluctuations seem smaller because of the larger scale). This

indicates the current limit on stresses which may be determined using

the localized hybrid method. Thus, refinement of the moire experiment

would be required for confident measurement of stresses below I ksi.

This may be achieved in future experiments using carrier patterns,

enhanced sensitivity, etc.

In the case of the discrete error, (in the example a large value of

5 fringe orders was used) it is seen that the St. Venant Principle

clearly operates and that the resulting error is confined to within a

very local region and this error is likely to be easy to detect when it

occurs (Fig. 19).

4.3 APPLICATION OF THE LOCALIZED HYBRID METHOD TO THE CONTACT PROBLEM

In the pin-loaded plate problem, primary interest was centered on

the stress distribution around the surface of contact. A secondary goal

was the determination of the angular extent of the contact zone as the

applied load varied. Finite element meshes were then devised for the

plate in the vicinity of the contact zone only. In selecting meshes

several options were available. The first, and most tempting, was to
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fit the boundary nodes to the locations of the fringe centers. However,

the moire experiment produces two distinct fringe patterns so that it is

not possible to define a single mesh in this way. An alternative

compromise is to use the denser (V) fringe pattern. This method is

attractive in that it would yield the most accurate values of input

nodal displacements. Practically, however, it is tedious for large

numbers of load cases.

A convenient approach is to take advantage of mesh generators in

the finite element programs and define regular meshes. In this case the

fractional fringe orders at the nodes must be estimated. It has been

shown above that even with a one quarter fringe error in interpolation

excellent stress accuracy is obtained for all but the lowest stress

values. Even in the case of low stress there are optical methods of

enhancing the accuracy of the interpolation using carrier patterns.

Some of the meshes used are shown in Figs. 20 and 21. The rules and the

approach used in the selection of the meshes were those of a

conventional finite element analysis. The elements employed in the _

analysis were eight-node isoparametric quadrilaterals. The analysis

assumed plane stress conditions and the material properties used were

for the aluminum, E = 10.2x10 6 psi and v = 0.34 and, for the quasi-

isotropic graphite-epoxy composite, E11 = E22 = 7.72x,0
6 psi, G12 =

2.97x106 psi and v12 = 0.30.

As mentioned above moire interferometry yields separate fringe

patterns for the U and V-fields. In the case of the pin-loaded plate

these have very different fringe densities (Figs. 9-12). The fringe

orders for the U and V displacements at the boundary nodes must be

determined. Several methods were evaluated. These included estimation
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of the fractional fringe orders at nodes when the mesh was plotted on

transparent film and superimposed upon the fringe patterns. Another

method consisted of determining the order and co-ordinates of the fringe

center intersecting the boundary of the mesh using a digitizing

system. Fringe orders at the boundary nodes were then obtained by

linear interpolation. Both method were used successfully.

Two finite element programs were used in the data reduction. The

first was based on a listing in Hinton and Owen [81. This program

provided a basic analysis but lacked pre and post-processing

capabilities. The program was run on an IBM 3090 and specific (to the

contact problem) mesh generation and post-processing programs were

written for an IBM Personal System 2 Model 50 with the LOTUS 1-2-3

Software.

The second finite element program used (mainly for the graphite-

epoxy analysis) was FINEL - a comprehensive suite developed by Denis

Hitchings at Imperial College, London. The version used ran on the

Apollo DN 3000 minicomputer. This program has comprehensive mesh

generation capabilities and a wide selection of element types.

Sophisticated post-processing is also allowed.

It should be recalled that the finite element calculations provide _

the best estimates of the element stresses at specific internal

locations known as the "Gauss points." Thus the values of stress

components around the pin/plate boundary must be extrapolated from the

Gauss points to the boundary nodes. For the quadratic elements used,

the stress (and strain) variations within an element are linear. Of

course, for very small elements, errors associated with this can be

taken as negligible. For the coarsest mesh used the distance from the

nearest Gauss point to boundary node was about 0.2 plate thicknesses.
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In the following section the stress distributions at and near the

surface of contact in the pin-loaded plate will be presented for both

the aluminum and composite plates.

LJ
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5. STRESS DISTRIBUTIONS

5.1 INTRODUCTION

The radial, hoop and shear stresses on, and near, the surface of

contact were determined from the moire data using the localized hybrid

approach. The stress distributions will be presented first for the

aluminum plate and then for the composite plate. The angular coordinate

system and convention for a positive shear stress are shown in Fig. 22.

5.2 ALUMINUM PLATE

The variation of the radial stress with angular location and

applied load is shown in Fig. 23. In most instances the fluctuations in

stress appear to be at the same angular locations for the various load

levels. This suggests that the fluctuations represent real stress

variations and are not artifacts of the computations.

The variation of the hoop stress with angular location and applied

load is shown in Fig. 24. It may be observed that the hoop stresses are

compressive near the zone of first contact (e = 900), the greater the

load the smaller the region in compression, and that the peak

compressive stress is approximately independent of load. It is also

apparent that distribution of stress is not symmetric about e = 900. It

might further be noted that the largest hoop stresses are tensile and

occur at or just beyond the end of the contact region.

The shear stress distributions are shown in Fig. 25. It is

immediately apparent that the variation of this stress component along

the contact region is highly irregular. The variation of shear stress

with applied load is also extremely non-linear. One important comment

to make is that the magnitudes of the shear stresses are an order of
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magnitude lower than the other two stress components. To provide some

perspective on this, the three components of stress are plotted on the

same axes in Figs. 26 and 27 for the 500 and 1250 lb loads,

respectively.

In order to provide some insight into the rate at which the contact

stresses decay with distance away from the contact region the radial,

hoop and shear stresses are plotted for various locations near the

contact zone in Figs. 28-30 respectively for the applied load case P =

1250 lb. It will be observed that the variation is very rapid. In the

case of the hoop stress the compressive stress (at e = 900) becomes

tensile within less than half a plate thickness from the contact

point. The effect in the shear stress distribution is most striking.

Within about one plate thickness the shear stresses change sign. Thus

the contribution of the frictional effects to the stress near the

contact zone is very localized. A small distance away the global

effects of loading and geometry dominate, and the shear stress

fluctuations are attenuated and the distributions become symmetric _

about e = 900. The stress components become essentially independent of

the frictional effects at the pin-plate boundary.

Since some publications provide stress distributions in terms of

cartesian rather than polar coordinates, the cartesian components of

stress are shown in Figs. 31 and 32 for the 500 and 1250 lb load cases,

respectively. Also, the stress components are normalized with respect

to the bearing stress p ( = P/Dt) in Fig. 33.

As noted in the description of the experimental procedure, the

moire displacement data were also recorded on the unloading part of the

load cycle. The stress distributions on this load-decreasing phase may

be compared with those on the load-increasing phase.
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The radial stress distributions around the pin-plate boundary are

shown for the load-decreasing phase in Fig. 34. The corresponding hoop

and shear stress distributions are shown in Figs. 35 and 36,

respectively. Comparisons of the loading and unloading stress

distributions are provided in Figs. 37 and 38. It is clear that the

most pronounced difference in the loading and unloading stress

distributions lies in the shear stresses - particularly for the 500 lb

load case in which there has been a complete reversal in the shear ..

stress direction. This, of course, is to be expected since the

direction of relative slip or tendency to slip is reversed on unloading

and this effect will be greater as the load is reduced and reach a

maximum before falling to zero when the load is removed. This is

apparent in Fig. 36 for the 250 lb load which has a smaller peak shear

stress than the 500 lb case. Also in the 500 lb decreasing load case,

0
observe that the maximum shear stress occurs at about 45 and that the

change of sign of the shear stress gives rise to an increase in the

radial (compressive) stress, as required from equilibrium

considerations. It should also be remarked that the magnitudes of the

shear stresses are much larger on the load-decreasing phase and, indeed,

the peak values in the 500 lb case approach that of the 1250 lb case. _

Note also in Fig. 38 that the region of negative hoop stress has been

almost eliminated on the load decreasing phase.

It has been observed that during the load increasing phase the

shear stress underwent a rapid transition with radial distance from the

surface of contact into the plate. In the load-decreasing phase,

however, this phenomenon does not occur - see Fig. 39. This is, of

course, to be expected since the shear stress due to friction and that

due to the unfilled hole have the same signs.
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5.3 COMPOSITE PLATE

In the study of the stress distribution in a pin-loaded composite

plate the possibility of failure mechanisms had to be taken into

consideration. Indeed, a major interest in the study was the

identification of the nature and location of various failure

mechanisms. Thus the presentation of results from the program on the

composite plate will differ from that for the aluminum plate.

The fringe patterns obtained for a load of 400 lb applied to the

quasi-isotropic graphite-epoxy plate are shown in Figs. 11a-c. It is

apparent that the fringes in the U-field (Fig. 11b) are much less dense

than those in the V-field (Fig. 11a) and that there is a marked lack of

symmetry in the U-field. There is also a local gradient on the left

side of the picture (indicative of sub-surface ply damage).

The fringe patterns were analyzed using the localized hybrid

approach. The meshes used are shown in Fig. 21. Meshes II and III (Fig.

21) were used to determine the contact angle more precisely and the

overlap between meshes I and II (or III) provided a useful check of the

sensitivity of the results to the mesh and input data.

The direct application of the localized hybrid analysis for the

stress components at the surface of contact produced wide variations in

the stress components near the first contact point (e = 900) and near

e = 1500 (which coincided with the local anomaly in the U-field fringe

pattern (Fig. 11b). Attention (as far as the stress analysis was

concerned) was then centered on regions close to but a little removed

from the surface of contact. These new zones of interest were taken as

circular arcs concentric with the center of the hole. On one such arc,

1.55 plate thicknesses from the surface of contact, the stress component
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distributions are much smoother. These stress components are shown in

Figs. 40 and 41 for the polar and cartesian coordinates respectively.

One advantage of the localized hybrid analysis is that meaningful

values of stress can be obtained in regions near anomalous zones. In

the case of the graphite-epoxy plate, the surface stress distributions

were obtained for angles in the range 0 to 600. These stress

distributions are shown in Figs. 42-44. It will be observed that the

peak hoop stress occured a little before the 0 and 180- positions.

Owing to the possibility of local bearing failure at e = 900 it is

not possible to compare the peak radial stresses in the composite and

aluminum plates. There are, however, marked differences in the shear

stress distributions. First, it should be remarked that the magnitudes

of the shear stresses are about double (for a given load) in the case of

the composite plate. The shear stress distributions are also much

smoother and regular. A most important difference is, however, the

change of sign of the shear stress at 9 = 300. In the cases for low

values of e the shear stresses are negative. In the case of the

aluminum pin this continues to be the case until the shear stress

approaches zero and then changes sign as e approaches 900. This

difference between the isotropic aluminum and the quasi-isotropic - =-

composite is curious, to say the least. Differences in the sign of

shear stresses in isotropic and quasi-isotropic materials were reported

in an experimental investigation by Hyer and Liu (91 without comment.

This feature is not apparent in the analytical laminate studies. This

point will be addressed in more detail below in a discussion of failure

and contact mechanics.
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6. DISCUSSION OF RESULTS

6.1 CONTACT MECHANICS

Significant regions at the pin-plate interface are shown in Fig. 45.

Ideally, it would be desired to determine the extent of the contact,

slip and no slip regions. The extent of the contact region is readily

defined. The location around the boundary at which both the radial and

shear stresses first become zero is taken as the end of the contact

zone. Beyond this position the radial and shear stresses remain zero.

In the present study the extent of the contact zone is then determined

from the distributions of r and T re Since the shear stresses are

small and approach zero slowly near the end of the contact zone, precise

definition is difficult, so moire confidence is placed upon the radial

stress distributions. Also, it should be noted that with the

experimental and numerical nature of the investigation the stresses are

small and oscillatory but not exactly zero just beyond the end of the

contact zone.

The contact angle increases as the applied load increases and has

the value zero at zero load (representing a line or point contact). The

variation of contact angle with load is shown in Fig. 46 for loading and

unloading of the aluminum plate. It will be observed that for a given

load the contact angle is marginally greater on the unloading phase.

This is, of course, consistent with the reversed direction of the

frictional forces on unloading.

The change of contact angle with load accounts largely for non-

linear geometrical effects in the pin-loaded plate problem. It is

observed that the contact angle increases rapidly with load at first and

then more slowly as the contact angle approaches 1800. The effects of
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this upon the variation of the peak radial contact stress are shown in

Fig. 47.

For the case of the composite plate, a more approximate

determination of the contact angle had to be made as a result of the

local bearing failure and matrix cracking on one side of the plate. The

variation of contact angle with load is presented in Fig. 48. The

contact angle increases more rapidly at first and then more slowly than

in the aluminum plate. This is consistent with local failure in the

composite plate at very low loads.

Regions of slip are those within which a limiting frictional stress

has been exceeded and there is relative displacement tangential to the

surface of contact. Coulomb friction defines static and dynamic

coefficients of friction for the surfaces in contact. Under limiting

conditions the ratio of the shear and normal stress should be constant

for the surfaces and, in the present case, equal to the co-efficient of

friction. This ratio is plotted for two load cases in Fig 49. it is

difficult, from this, to determine the coefficient of friction, whether

slipping has occurred or even if the frictional behavior is Coulomb in

nature. On the unlc~ding phase at 500 lb it is possible that between

a = 350 and e = 600 some limiting value 0.2 is obtained. However,

without knowledge of the displacement of the pin relative to the plate,

this becomes a matter of conjecture. It should be noted that the

extreme parts of the curves (9 = 0 and e 1800) are unreliable since

both the shear and radial stress approach zero in these zones.
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6.2 STRESS DISTRIBUTIONS

There have been many analytic studies of the pin/plate contact

problem. These vary greatly in complexity and often include restrictive

assumptions. Unfortunately an exact comparison of the current

experimentally determined stress distributions with analytical ones is

difficult, if not impossible, owing to the lack of detailed information

about actual conditions at the pin/plate interface, particularly the

local coefficient of friction and the distribution of contact surface

asperities. The analytical solutions assume Coulomb friction with some

value(s) of the coefficient(s) of friction. Hyer and Klang [101 present

non-dimensional stress distributions for a similar problem. The

sensitivity to load and, therefore, contact angle is not indicated.

Thus the results of Klang and Hyer are compared for two load levels (750

and 1250 lb) from the present study (Figs. 50 and 51). Generally, the

peak stress values compare well for all stress components. The

distributions show general agreement except for the shear stresses. One

peculiarity of the Hyer and Klang solution is, however, the large

compressive hoop stress at the first contact point (e = 900). This

phenomenon is not detected in the present study perhaps as a result of

the overestimated coefficient of friction in the analytical study. The

possible existence of some compressive hoop stresses is not questioned.

Indeed such stresses are shown in Fig. 24. In this figure it is shown

that increasing load does not affect the magnitude of this compressive

stress but does reduce its extent (in the hoop direction). The

existence of the compressive hoop stress may be explained by considering

the Poisson expansion (in the hoop direction) of an element at the first

contact point under the large compressive radial stress. This expansion
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is resisted by the tractions between the pin and plate so that the hoop

strains are smaller than in the unrestrained case. Hyer and Kang show

that the effect is strongly dependent upon the magnitude of the co-

efficient of friction assumed in the analysis. In the case that is

taken as zero the hoop stresses are always positive in the Hyer and

Klang model. Experimental support for the dependence of this effect

upon the sign of the frictional tractions is provided by data from the

unloading phase. The reversed sign of the shear stress tends to promote

positive (tensile) hoop stresses near e = 90 in Fig. 38. Another effect

of this is to shift the peak compressive radial stress away from the

first contact point.

A further insight into this phenomenon can be seen by considering

the equilibrium equations in polar coordinates. In the absence of body

forces, these are

' r i r o 0 (16)
ar r ae r

and

- a + a-tre + re = 0 (17)
r ae ar r

The hoop stress ae can be written as

= ra + b + a (18)

r 3r
where a = - and b = e

The experimentally determined stresses and stress gradients identify the

relative importance of each term in the equilibrium equations. Near
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e 900, Cr is large and compressive (negative) and a (the gradient
of 0r in the radial direction) is positive. Depending upon the local

direction of relative motion (or impending motion), b (the rate of

change of shear stress along the contact interface) may be positive or

negative. Of course b also depends upon the magnitude of the frictional

forces. In the loading phase b is positive. So ar must be negative

enough to yield a compressive o . On unloading to 500 lb, ar becomes

more negative (than on the loading phase), b = 0 and a is positive from

which it is deduced that a must be more positive. That is, the rate of

increase of the radial stress with distance from the contact boundary

must be greater in the unloading case. This is consistent with the

experimental observation that ar is greater on the unloading phase and

that the frictional effects are highly localized. Thus, depending upon

the sign and magnitude of the contact tractions, negative hoop stress

can occur.

The test case used in validating the localized hybrid analysis

provides a convenient means of illustrating the effect of the magnitude _

and sign of the frictional tractions upon the hoop stress distributions.

These numerically obtained results are summarized in Fig. 52. It is

clearly shown that the constraint effect of frictional shear stress is

responsible for the local tensile or compressive hoop stresses

near e = 900. That is, when the applied shear tractions are positive,

compressive hoop stresses are created.

It has been observed above that the extent of the compressive hoop

stress zone decreases as the load increases but the peak magnitude

hardly changes. Qualitatively this may be explained by observing that,

while the radial stress increases relatively rapidly with load, the

42



constraints due to the frictional forces increase much less rapidly.

Thus the effect of the increasing radial stress promotes tensile hoop - q

stresses and the extent of the compressive hoop stress zone is

diminished.

Summarizing the stress distributions obtained in the experimental

stress analysis,

(i) The greatest stresses are tensile and in the hoop direction near

9 = 00 and 1800. Depending upon the loading sequence

(loading/unloading) the smallest hoop stresses occur at or near

0
e = 90 and may be compressive. Defining the stress concentration

factor (SCF) as the maximum stress (at o = 00 and 1800) divided by the

average stress on the ligament, it may be seen that, in the case of the

aluminum plate, the SCF depends upon the load and marginally upon the

loading sequence and also approaches the value predicted by Frocht and

Hill J111 Fig. 53.

The stress concentration factors for the composite plate show more

fluctuation. Initially these are close to that for the aluminum plate

but, as a result of material failure which leads to a complex load

redistribution, the SCF's are up to 20% higher.

(ii) The radial stresses are large and compressive near the point of

first contact (e = 900). As pointed out above, the effects of

frictional tractions are so as to produce compressive hoop stresses in

this region and shift the location of the peak radial compressive

stresses away from the point of first contact. This is most clearly

apparent in the 1250 lb load case. In terms of the bearing stress (p),

the peak radial stress is about 0.9 p compared to 1.2 p for the peak

hoop stress.
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(iii) The shear stress distributions at the pin/plate contact surface

are complex. It has already been observed that these are typically an

order of magnitude smaller than the hoop and radial stresses. On an

expanded scale in Fig. 25, fluctuations of up to 0.5 ksi are apparent.

In the case of all but the largest loads these fluctuations tend to mask

the general trends.

It is important to establish whether these fluctuations represent

true frictional phenomena or are artifacts of the method of stress

calculation.

6.3 FRICTIONAL PHENOMENA

The stress components at the contact boundary in the aluminum

specimen contain fluctuatons of as much as 1.5 ksi amplitude. Away from

the contact boundary, these fluctuations are attenuated. In the case of

the composite specimen (away from the failure zones) the distributions

are much smoother than in the aluminum specimen. The possible sources

of these fluctuations are computational and experimental artifacts, and

true localized frictional phenomena.

(i) Computational artifacts

The test case for the localized hybrid analysis provides a good

check of the sensitivity of the numerical method. The fact that the

errors introduced in the displacements caused only small amplitude

fluctuations directly associated with the input data suggests that

differences between Gauss point and nodal point accuracies may be

discounted. Also, the largest error in assigning the input nodal

displacements from the fringe values would give rise to a fluctuation of

no more than 0.5 ksi and probably less.
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The stress distributions were calculated for several load levels.

The fluctuations tended to occur at fixed locations around the contact

interface. This provides further support to the proposition that random

errors in assigning fringe order displacement data to the boundary nodes

may be discounted. More important, however, it suggests that the

fluctuations are identificed with the contact geometry.

The composite and aluminum specimen data were originally analyzed

with different meshes and finite element programs. When both sets of

data were reduced using identical procedures the results were the same.

That is the fluctuations in the aluminum specimen stresses were still

much greater than in the composite.

(ii) Experimental artifacts

The gratings on the aluminum and composite specimens were

different. Those on the aluminum were etched and thus had zero

thickness while the composite specimen had replicated gratings which had

a thickness of about 0.001 in. The etched grating was used to eliminate

the possibility of shear lag in the epoxy replicating medium. The

presence of shear lag would cause some smoothing of fluctuations but it

is very unlikely that this effect would be large enough to account for

the much smoother stress distributions in the composite specimen study.

(iii) Localized frictional effects

The arguments presented above suggest that the experiment on the

aluminum specimens has identified localized frictional effects which

give rise to stress fluctuations of about 1 ksi. The fluctuations are

large enough to mask the general trend in the contact shear stress.

Moving away from the contact interface these fluctuations are rapidly
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attenuated and the stress distributions become independent of the

frictional effects at the interface. Thus the interfacial frictional

effects are very short range and associated with small scale phenomena.

iL will be observed that the stress distributions do not show exact

symmetry about 9 = 90'. The shear stress distributions show the most

pronounced lack of symmetry and the effect of this is to move the peak

radial and minimum hoop stresses away from e = 900. The fringe patterns

clearly indicate a lack of symmetry in displacements. Thus the

frictional effects are not symmetrical. This is, of course, consistent

with a localized friction model.

The composite specimen did not show such strong localized effects.

Also, the shear stress distributions were very different from those in

the aluminum specimen. From e 0 to about e = 300, the shear stresses

are negative in both cases. However, beyond e = 300 the composite

specimen has positive shear stresses on the contact interface. (It will

be recalled that only a limited range of e-values were available for the

composite due to local failure.) This indicates that the sign of the

direction of slip or tendency to slip in the composite is reversed

beyond e = 300. The photoelastic experiments reported by Hyer and Liu

[91 are much less sensitive than those presented here. The photoelastic

study yielded opposite signs of shear stresses in isotropic and quasi-

isotropic plates. The current investigation suggests this is only

partly true. (It seems likely that the photoelastic experiment might

not have been able to detect the small positive shear stresses.)

This difference between isotropic and quasi-isotropic behavior is

important and has not been included in analytical studies which use

laminated plate theory. One clue to the behavior of the (0/60/-60)
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laminate lies in the observation that there is a plane of symmetry

at e = 300 where the shear stress changes sign. This is illustrated in

Fig. 54. Another factor concerns the detailed frictional behavior of

the composite and the aluminum pin. Frictional effects occur between

the aluminum and the graphite fibers and between the aluminum and the

epoxy matrix. The nominal fiber volume fraction is 60% but

consideration should be given to the variation with e of the area of

graphite exposed to the aluminum. It may be shown that this is

minimized at e = 90 and 30" but is largest at = 600 where some fibers

are tangential to the hole. Thus the frictional tractions in the

composite will vary with angular position in a manner different from

that in an isotropic material. Near e = 600, the greatest amount of

graphite will be in contact with the aluminum. Thus any model of the

frictional behavior of a pin-loaded fiber composite plate must include

the variation of the co-efficients of friction with angular position.

That is, the simple application of Coulomb friction will be in error.

The above arguments are specific to the (0/60/-60) lay-up but

similar arguments apply to other stacking sequences. The shear stress

distributions in the composite specimen are further complicated by the

presence of local failure.

6.4 COMPOSITE PLATE, FAILURE ANALYSIS

After loading and unloading the graphite-epoxy plate, non-

destructive damage evaluation techniques were employed. The ultrasonic

C-scan showed no evidence of (delamination) damage. However, the

penetrant enhanced X-ray investigation showed the presence of matrix

cracks in the 600 and -600 plies at 9 1 300 and 9 = 1500 respectively.
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Note that the cracks are larger in the -600 plies which are four layers

thick. There was also some evidence of bearing failure (Fig. 55).

Micrographic sections were also prepared from the specimens. These-

failed to show the matrix cracks so clearly defined in the radiographs

but they were successful in depicting the bearing failures of the 0°

plies. Fig. 56 shows fiber kink in the outer 00 ply and associated

delamination (which is also apparent in the radiograph) near e = 90'.

The stress distributions obtained at the pin-plate boundary were

used in a laminate analysis to determine the variation of the ply

stresses with angle. In order to predict the location of matrix

cracking, stresses normal to the fiber direction are plotted for each

ply orientation in Figs. 57-59. It may be observed that the largest

tensile stresses normal to the fiber direction occur in the 600 plies.

The angular location of the peak stress increases with load and occurs

at about 200 at a load of 900 lb. On the basis of a maximum stress

failure criterion the location of the matrix cracks is well predicted.

At this stage it is not possible to determine the load at which the

matrix cracking first occurs. The inclusion of thermal residual

stresses is a very significant but unquantifiable factor. A further

complication is the fact that the observed damage is that accumulated in

the complete loading cycle. There is experimental evidence that matrix

cracking may have occurred at very low load levels first in the thick (4

layers) -60' plies near a = 1500, rather than in the thinner (2 layers)

dispersed 60* plies near e = 300.

Further discussion follows in the section General Summary and

Conclusions.
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Fig. 6. Drag method for applying a uniform film of photoresist on the
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Fig. 9a. Ny fringe pattern, depicting the V-displacement field at the
front of the aluminum specimen for the 500 lb. load.
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Fig. 9b. N fringe pattern, depicting the U-displacement field at the
front of the aluminum specimen for the 500 lb. load.
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Fig. 9c. N y pattern at the back of the aluminum specimen for the 500
lb. load.
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Fig. 10a. N y pattern at the front of the aluminum specimen for the 1250
lb. load.
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Fig. 10b. Nx Pattern at the front of the aluminum specimen for the 1250lb. load.
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Fig. lb. Nx fringe pattern at the front of the composite specimen for
the 400 lb. load.
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Fig. 11c. Ny pattern at the back of the composite specimen for the 400
lb. load.
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Fig. 14. Numerical model for testing the localized hybrid analysis.

The mesh is taken as representative of the region of 
interest in the

experiment and the loads were chosen to give typical 
stresses in the

contact problem.
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Fig. 20. Meshes used for the localized hybrid analysis of the aluminum
plate.
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MESH I

MESH II AND MESH III

Fig. 21. Meshes used for the localized hybrid analysis of the composite
plate.
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Fig. 54. Schematic of the fiber directions in the graphite-epoxy plate.
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bearing failure

matrix tension failure

Fig. 55. Radiograph showing matrix cracking and some bearing failure in
the composite plate after unloading.
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delamnination

fiber kinking failure

Fig. 56. Micrograph showing fiber kinking (bearing) failure in the
composite plate.
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FURTHER REFINEMENT AND APPLICATIONS OF THE MIXED
COMPUTATIONAL ALGORITHM FOR PLANE ELASTIC CONTACT PROBLEMS

E. Yogeswaren* and J. N. Reddy
$

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

ABSTRACT

The mixed finite element scheme developed earlier has been further
studied in order to improve tne model characteristics and operation as
well as to explore further aoDiications with regards to mechanical
joints. One of the imcortant modifications that has been implemented in
the present study is the utilization of a dynamic as aell as a static
coefficient of friction for the evaluation of contacting surface
behavior instead of a single friction coefficient as used in the
previous study. This has improved the model behavior and involved a
substantial reorganization of program methodology. Other refinements
include the incorporation of a modified solution technique that allows
the solution of the indefinite stiffness equation system which is formed
in the first iteration of the first load step, and the usage of a finer
mesh. The new solution technia-e also avoids the halt of execution of
the program whenever small elements are introduced in the leading
diagonal due to contact loss.

The case of the pin-loaded aluminum plate ras been studied again to
obtain better correlation with experimental rezilts; and a pin-loaded
orthotropic plate behavior as predicted by an 1ralytical solution is
compared with the present model predictions. --e hybrid technique has
been used to estimate the static and dynamic c:efficients of friction of
the aluminum pin/plate system.

An elastic-plastic analysis based failure model of pin-loaded
laminates is illustrated by examples which indicate when bearing,
shearout and tensile failure occur in the laminate mechanical joints.
Finally, some improvements that could be carried out on the present
model to predict severe deformation and fracture behavior are discussed.

*Graduate Research Assistant

Clifton C. Garvin Professor of Engineering Science and Mechanics
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I. INTRODUCTION

The updated Lagrangian formulation based on a mixed variatonal

statement and the associated finite element model developed earlier [II

gave results in good agreement with the analytical solutions for most

contact problems studied there. However, the numerical results obtained

for the pin-loaded aluminum plate showed poor correlation with the

experimental results of Joh i21. The poor correlation can be attributed

to both theoretical and experimental models used. It was also

discovered that 'he reed for a better solution technique existed since

the program operation 4as disrupted whenever certain contact node pairs

were about to lose contact thus creating very small terms in the leading

diagonal. The work reported here is largely based on the subsequent

research carried out to improve the accuracy of the results by modifying

and refining the computational procedure developed earlier.

Applications of the refined model to the pin-l aded plate problem and

other contact problems such as a mechanical joint in filamentary

composite laminates are presented.

Factors responsible for the discrepancy between the theoretical and

experimental results can be many and may include the non-ideal

conditions under which the experiment was conducted. An attempt is made

in the present study to see if closer agreement between the theoretical

and experimental results can be achieved by refining the computational

model. Indeed, the study showed that it is possible if a dynamic

coefficient of friction (jd) and a static coefficient of friction (s)

are used in the analysis instead of a single coefficient of friction, as

was done in the earlier work. This approach is more realistic since

this comes closer to the continuously varying friction coefficient
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observed in practice. The basis for the values of d and s is provided

by the hybrid technique study conducted with the experimental values of

displacements along the hole boundary.

It was reported in 11! that the first node of the finite element

mesh was selected as :j -.e constrained in both directions which enables

the use of a conventinii ba-ced solver. This is due to the fact that

the leading diagoral teems In J<1l1 (see [11) will be zero in the first

iteration of the first 'cad 4-crement, thus giving an indefinite system

of equations. AlthOugn this simple so'ution worked for problems with

carefully chosen Tesn numbering, it breaks down when leading diagonal

terms become small due to loss of contact between pairs of nodes.

Hence, the earlier solution scheme was discarded in favor of the

technique suggested by Mirza [31.

In addition to the above modifications, which are mainly remedial

in nature, some applications of the refined mo:el were also conducted

particularly with respect to failure in mechan::al joints of composites.

The advantages and pitfalls of the technique are also outlined in the

section on applications.

Finally, an alternative kinematic description is suggested for

severe deformations and cracks encountered in contact systems. This

model when incorporated in the present scheme can lead to economical

analyses of large deformation problems with fracture by avoiding the

remeshing techniques normally used in these cases. No attempt is made

to implement the computational procedure in the present study.
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2. PRESENT STUDY

2.1 Contact Stress Evaluation

Evaluation of the kinematical relations and tractions at the

contacting surface is a significant factor in the analysis of contact

problems. One of the main advantages accrued from mixed formulation is

that the normal and tangential surface tractions can be calculated

directly from the rodal stress ialues obtained in the mixed model. A

practical way of treating contact surfaces is to assume that the forces

are transferred only at the nodal points as concentrated forces

resulting from the integrated effect of contact stresses up to and

including the contactor node. In the earlier work [I] a segment of

triplet nodes were considered on the contactor body, with the node in

consideration as the middle node, and by integrating the tractions on

the contactor surface the nodal forces were obtained. In the present

study a more direct and simple algorithm is adoDted to reduce

calculations involved and by using a finer mesr it is made certain that

the accuracy of the model is not compromised.

In the present analysis the contact status of any contact segment

of the target body containing a node of the contactor is decided by the

normal and tangential nodal forces at the given node. If the tangential

force at a node is more than the frictional capacity then the node is

under sliding contact. The limiting frictional resistance that can be

sustained by a stationary node K is given by,

Frictional Static Coefficient ) Normal Force

Frcinlof friction j Component (2.1)
Capacity )K o s  at node K /

However, if there is already slip occurring in the last load increment,

the frictional capacity is given by
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Dynamic Dynamic Coefficient ompoe .Frictional = of Friction x Component (2.2)

Capacity )K ( dat Node K

Although the above concept was discussed in {11, it was left to the

current study to implement this into the program. Thus as a first step,

the direct path discussed in this section was chosen to check the

usefulness of this rotion. "t should be noted here that Sections 3.3.4

and 3.3.5 of [I1 are made :Dsolete by the present approach. But,

implementation of - and in the integration process Dutlined in these
si

sections will be cdrried Out if the present method is found to be

unsatisfactory in later applications.

Sticking contact occurs if the frictional capacity as determined by

Eq. (2.1) or Eq. (2.2) exceeds the tangential force at node K. The

conditions of contact from the last load increment determines whether

Eq. (2.1) or Eq. (2.2) is used. Any free target segment that comes in

contact will have a sticking contact since the tangential force is zero

along the free surface. This is also true when a segment re-establishes

contact after a separation. However, when the friction coefficient is

very low the frictional capacity may be so low that sliding may occur at

initial contact itself.

Sliding condition is brought about 4hen the nodal tangential force

exceeds the frictional capacity of the segment given by the appropriate

equation (2.1) or (2.2). The node is constrained to move only in the

tangential direction and the frictional resistance opposes the relative

motion of the bodies. The dynamic frictional resistance opposing the

motion changes continuously as a function of the relative magnitude of

the tangential and normal forces icting at a given node. As a first-

order approximation, the value of the resistance at the beginning of the
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load increment is assumed to be opposite to the direction of mction. It

is to be noted that the global nodal forces are the external forces

acting on every element to balance the forces due to the stresses.

Frictional forces are externally applied at the contactor nodes in the

direction of tangential rorce and are given by,

(tangential (normal
(External Frictional Or-ces) = si nodal force) x ud x nodal

K force

(2.3)

if and only if

Normal I <Tangential
Ncdal Forcel Nodal Force (

The frictional force is determined at all equilibrium configurations and

applied along the target surface.

When the coefficient of friction is very small the frictional

capacity of all the segments under contact is ijentically zero at all

times. The contactor nodes follow the fixed tdrget surface and since

the target surface need not be parallel to the global axes, a local

coordinate system is defined with constraint of movement along one axis.

Separation occurs when the reactive contact forces act in the

negative direction of the unit outward normal to the contact surface.

However, if the forces as evaluated at the end of an equilibrium

configuration become positive, then there is no contact force betwen the

contacting bodies, and the segment containing the node his separated.
J

This node is considered to be free and once again is a potential

contactor node and checked for contact overlap in subsequent load

increments.
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2.2 Modified Solution Technique

The finite element equations resulting from the mixed formulation

can be written as,

1LF
(2.5)

where

K = J +x dxdyKi j =  " [xx --x "X <y x )y y 3xyy ay

(2.6)

Thus it can be seen from Eq. (2.6), for the first iteration of the first

load increment, that (K11 = 0 because Txx = 7 - yy 0, thus

resulting in an indefinite system of equations. Although Eq. (2.5) can

be solved for this condition, by first solving :or stress and then for

displacements, a more direct way has been given by Mirza [31. He

suggested that premultiplying both sides of the equation by the

transpose of the global stiffness matrix, one can obtain a positive-

definite system of equations. For example, if Eq. (2.5) can be written

as

[KI{[ I = [PI (2.6)

where

10 F 12,u.F

[2I [ T [K 22-S
IKI L [Kl2IT [K22j , i = { x P, = :

then a positive definite system is given by

[TK]V} = [Kj;P , (2.7)

and the solution of Eq. (2.7) gives the results of Eq. (2.6).
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This technique has been extended in the present study by reforming

Eqs. (2.5) into the type given by Eq. (2.6) whenever leading diagonal

terms are small and -hen carrying out the operations described above.

3. LITERATURE REVIEW

3.1 Overview

The earlier .,ork 7ii c7nt-ins and discusses a number of references

on the finite elemert ira!Yses 2f contact problems and the present

review is intended to 3e Aithin the scope of the present study. The

major aspects of cDrtdact problems have been discussed in detail in [11

and it would be approDriate here to concentrate on how the model can be

improved by modifications based on an Eulerian-Lagrangian formulation as

discussed in (4-61, and to examine some of the work that has been

carried out on the failure of mechanical joints in composites.

Mixed formulations of contact problems ca- be further enhanced by

incorporating a form of kinematic description, addressed in [41 as an

Eulerian-Lagrangian displacement model. The ccnventional Lagrangian

description uses a fixed reference material configuration to formulate

equilibrium equations where a certain reference quantity of material is

"followed" throughout its physical behavior. Conversely, the material

can be allowed to "flow" across a fixed spatial reference and physical

measurements can be referred to the fixed frame. The total Lagrangian

description uses initial configuration as the reference whereas the

updated Lagrangian description refers to the current deformed state.

But the General Lagrangian description and Eulerf.an-Lagrangian

description are more flexible in that the configurations used to measure

spatial variables and to define the strain measure need not be the

same. Thus, this allows material flow across the meshes thus enabling
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large deformations in contact and fracture to be captured within an

initial mesh rather than employing mesh redefining techniques. The

application of this technique is illustrated in [51 for contact problems

and in [61 for dynamic fracture problems.

Calculation of tie strergth and failure mode of a composite

laminate containing a pin-l:aded hole requires the knowledge of the load

distribution inside tre s face of the hole. Frequently, a cosine load

distribution is ass,"ed s'-ce such a load distribution greatly

simplifies the calculations. The stresses inside the laminate

calculated by a cosine load distribution may differ significantly from

those which actually arise in the structure. As a result, those failure

criteria which require an accurate knowledge of the stress distributions

near the surface of the hcle, will predict failure inaccurately when

used in conjunction with cosine load distribution. Work on composite

bolted joints has been extensive with early st Jies concentrating on

empirical design and gradually progressing to tialytical methods for

stress analysis (see [7-141) and the search for appropriate failure

criteria (see [15-201). Empirical design methods proved too costly and

time consuming since the large number of variables in joint design

require huge data bases for each material and class of laminates. Thus

analytical techniques have been attractive, although this requires

vigilance on the part of the designer towards tie pitfalls normally

encountered.
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3.2 Eulerian-Lagrangian Description for Severe Deformation and

Fracture

This section reviews the updated Lagrangian scheme used in the

present study, and outlines the Eulerian-Lagrangian formulation for an

easier and accurate riodel'4-ao cf contact and fracture. However, the

latter scheme is not imloemented on the computer during the present

research.

The modified functional 4ith the Lagrange multiplier for the

updated Lagrangian formulation is given by (see (11),

e dv + (leij + inij)dv - FL=I 21ijrs i rs 1I ij V ijIi 1jvI vI

-f u. )u,LSij~leij- (--I+ J-x)jdv (3.1)

vI  i

Since Sij leij = U + C e e (3.2)

So0 2 ijkz ij 1e ki

Eq. (3.1) can be expressed as
3ui  3u.

1L= I ['ij(e. + 1iI + - + - U Jdv -F (3.3)

where U the complementary strain energy density,

Uo D ijk I Sij is k (34)

By imposing stationarity on rL in Eq. (3.3), we obtain the following two

approximate equilibrium equations which form the basis of the mixed

finite-element model:

S i 6( I ij)dv + V 1 1S ij6u i , dv = 6( F) = =i (le ij)dv
VI I VI(3.5)

ui~j (1Sij)dv = Dijk 1Skic(,Sij)dv = 0 . (3.6)
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Approximating the displacements and stresses by

n
un(x1,X E uq4,(x x (3.7)ui xx2) j=1 2)

n

lSi  '  )  E -S. (,k x2  (3.8)
k=I

and substituting Eqs. (3.7) ard (3.8) into Eqs. (3.5) and (3.6), we

obtain the mixed finite element model,

(K li [I I j F}' ~F'NL~

12 T K22  (3.9)

where the details of the element matrices are given in [1].

A similar approach with the Eulerian-Lagrangian model would give,

1 (i0 + S j + Ii)d

L 2 R J I (eij ij)JdVR
v

u - u. (
R I ij I ij - 2 (3XR Jkj a x ildR (3.10)

v k k
where

R

k= axkand J =IJ j3 ij

Similar manipulations as for the updated Lagrangian formulation lead to,

[K1ll 1K21 [i3l J IR

Ki [K 2  K 3 ] = AR(3.11)

[Kill [K i2)  [K i3)  aR i

where tu} is the Lagrangian incremental displacement, *U} is the

Eulerian incremental displacement, and js} is the incremental stress

vector. The total incremental displacement is given by

[uT = - r (3.12)
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The details of the Eulerian-Lagrangian method and its application in the

present context can be found in [41 for the contact model and in [61 for

the fracture model, although References 4 and 6 consider only the

displacement formulations.

3.3 Failure analysis of Mecnanical Joints in Composites

Stress analysis, a failjre criterion and a strength model are the

basic components of a ojsnt failure analysis (or a strength analysis).

The three basic failure iodes associated with bolted joints in

composites are the bearing failure, the shearout failure and the net

tensile failure (see 115-231). It has been found that the shearout and

the net tensile failure can be adequately modelled by a plane elastic

stress analysis, with a point stress failure hypothesis and a

macroscopic failure model such as the maximum stress or the maximum

strain criterion.

Recently, there is a trend towards studie; incorporating ply-by-ply

failure analysis of bolted joints, in order to assess the damage to

individual plies (see Reddy and Pandey [241). This requires some form

of macroscopic criterion such as the Tsai-Hill or Hoffman's criterion to

predict failure.

An altogether different approach has been adopted towards failure

by Hyer et al. ([71,[81), who have used the maximum radial and

circumferential stresses as indicators of the capacity of a bolted joint

in order to study the effects of pin elasticity, pin fit-interference J

and friction on the capacity of a joint. They concluded that all three

factors are detrimental to the capacity of the bolted joint.

4
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4. APPLICATIONS

4.1 A Pin-Loaded Aluminum Plate

Three different meshes were used to model the aluminum plate. All

meshes took advantage of the symmetry of the problem and modelled only

half the plate. Furt-'er s'Tolfication was carried out on Mesh A (Fig.

1), where only a quarter of t'e pin was modelled as was discussed in the

earlier study [1i. -c-Aever, ooth Mesh B and Mesh C did not adopt this

simplification and tley moaeiled half the pin as shown. i'he contact

nodal locations of Yesh A are reiterated here for completeness. These

locations are the following (degrees): 0.0, 1.0, 2.0, 4.0, 6.0, 8.0,

10.0, 12.5, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 54.0, 63.0, 72.0,

90.0, 99.0, 108.0, 117.0, 126.0, 135.0, 144.0, 153.0, 162.0, 171.0 and

180.0. In Mesh B these locations were spaced at 9' intervals and in

Mesh C these were at 2.50 intervals for the first 900 and at 90

intervals for the second 90' as shown in Fig. 2 and 3 respectively. The

number of elements and the nodes in the meshes are given as follows:

Mesh A: 236 elements, 286 nodes,

Mesh B: 332 elements, 391 nodes,

Mesh C: 452 elements, 540 nodes.

All nodes along the line of symmetry were constrained to move only in

the lengthwise direction and the center of the pin (numbered 1) in all

three meshes was constrained in both directions. The load applied was

distributed along the shorter edge away from the pin, in the lengthwise

direction. A dynamic coefficient of friction ld. = 0.25 and a static

coefficient of friction L = 0.35 were used in the analysis with these

numerical values having been estimated from the hybrid technique.
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The load was applied in 14 steps following closely the experimental

loading values. In the load increasing phase the values of load were

20, 23, 520, 1240, 1460, 1670 and 1980 lbs. respectively with the

decreasing phase values being 1800, 1600, 1210, 1070, 535, 210 and 40

respectively giving 14 7cad steos. The number of iterations required

for each load increment were 8, 8, 3, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, and

3 for the case illustrated in Fig. 6, where Mesh A was used and results

are plotted for load step 4, where the total load is at a value of 1240

lbs.

The case shown in Fig. 5 4as analyzed with the modified

computational procedure discussed in Section 2. The results show a

closer agreement with the experimental results of Joh [21, than the

results shown in Fig. 4, which were obtained using the original

procedure of [1]. It is interesting to note that a constant value of

friction coefficient of 0.15 gives a closer agreement in Fig. 4 than the

constant friction coefficient of 0.30, these values being chosen

arbitrarily. It is possible here to be misled easily to conclude that a

better choice of value of friction coefficient might be 0.15 than 0.30

unless the full picture is revealed by Fig. 5, which indicates that

better results are given by a dynamic/static friction model. Indeed it

is possible to conclude here that yet better modelling can be achieved

by a continuous friction coefficient variation such as that given by a

power law although the implementation of this may be more cumbersome.

It can also be seen that the angle of contact is more realistic in Fig.

5 (after the modification) than in Fig. 4 (before the modification).

The load decreasing phase results shown in Fig. 6 compare favorably

with the experimental results, despite some 66X difference in the values
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Of T rfrom 40 to 75' . This can be considered fair compared to the

results given by the method before modification, which gave identical

results to the load increasing phase without any negative values

for Tre.

4.2 A Pin-Loaded Ortrotrcp'c 'late

An analytical solution to the problem of pin-loaded composite

laminate has been cbtai-el oy -yer et al. ([71,181) based on a complex

Fourier series methcd ird a collocation technique which enforced

boundary conditions at jiscrete locations around the hole boundary.

Results were obtained by this analytical method for infinite orthotropic

plates loaded by pins. These results were chosen to be compared with

the finite element results since both methods capture the idealized

conditions of the model to the same degree.

The mesh shown in Fig. 7 4as selected to 'iealize the infinite

plate and the pin, with 426 elements and 509 r:des. The nodes along the

line of symmetry were constrained to move only in the lengthwise

direction in the same way as the nodes along the longer boundary whereas

the nodes along both shorter boundaries were constrained to move along

the y-direction. Normalized circumferential, radial and shear stresses

along the hole boundary were plotted against the radial angle and found

to compare well with the analytical results (Figs. 8 and 9).

4.3 Application of the Hybrid Technique to Estimate Static, and

Dynamic Coefficients of Friction

This technique basically consists of applying the loading,

prescribing the displacements from moire analysis to the hole boundary

and prescribing other boundary conditions as before. Thus only the

plate is discretized for this analysis, without the pin, and the mesh
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used is shown in Fig. 10. The stresses along the boundary are obtained

from the analysis and are shown in Figs. 11 and 12 plotted against the

radial angle. Thus the shear stress Tr6 and the radial stress arr show

remarkable resemblence to the stresses given by Joh [21 at a load level

of 1840 lbs.

In order to assess tne friction coefficient values, to be used for

the regular finite element analysis, Tr /arr ratio was plotted against

the radial angle for load increasing and decreasing phases and the

result is given in Fig. 13. In the load increasing phase nearly all

contact is associated aith slip and the maximum ratio of T r/arr cannot

exceed the dynamic friction coefficient and thus wd = 0.25 is a rational

choice. The negative ratio is maximum between 550 and 600, where the

transition from slip to stick occurs and thus us = 0.35 is chosen to be

the static friction coefficient.

4.4 Analysis of Failure in Mechanical Joints

A composite laminate (0°/±45°/90°)s with laminae of the following

properties has been used for these studies:

EI = 19.1 x 103 ksi XT = 229.4 ksi T = 17.3 ksi

E2 = 2.0 x 10
3 ksi YT = 10.1 ksi

G12= 0.9 x 103 ksi Xc = 252.1 ksi

v12 0.3 Yc = 32.0 ksi

It has been established that certain configurations favor certain modes

of failure (181. This fact has been used in determining the plate

configurations for studying bearing failure (Mesh F, Fig. 14), shearout

failure (Mesh G, Fig. 15) and tensile failure (Mesh H, Fig. 16).

The analysis has been carried out and normalized radial and

circumferential strain curves have been produced for each failure
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mode. Failure is indicated by the increased strains given by a

nonlinear model incorporating Tsai-Hill criterion as compared to a

linear elastic model. Results are shown in Figure 17 for bearing

failure, Fig. 18 for snearcut failure and Fig. 19 for tensile failure.

The Tsai-Hill criterion used 4n this study is,

012 022 -12 1 1 11 1 1
(-)+ i)+ + 1 L 7 1'J 2 +(-+ 2 3

- X 2 + y-2 - 2 y2 Z2- X2

1 4 42 + 52 062

z X
where X, Y are either compressive (Xc, Yc) or tensile (XT, YT) strengths

and T is the shear strength in the xy plane.

5. SUMMARY AND CONCLUSIONS

The mixed finite element model developed in [I] has been modified

by incorporating a realistic interface friction conditions and a

solution procedure. A dynamic as well as a static friction coefficient

were used to analyze a pin-loaded plate problem for which experimental

results are available. The new solution algorithm not only provides

flexibility in numbering the nodes but also avoids the halt of

computation due to the appearance of small terms on the leading

diagonal, during the analysis. An accurate contact stress analysis is

essential in some applications such as the study of failure in bolted

joints of laminated composites and some example problems have been

studied in this area.

It is possible to extend the capabilities of the present model even

further by adopting an Eulerian-Lagrangian formulation. This will

simplify the analysis of problems, such as cracks emanating from bolted

joints by several orders of magnitude.
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Figure 4. Comparison of the experim~ental and finite element
results for load-increasing phase at load level 1240 lbs.
(the FEM scheme used is that originally developed in [11).
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for the load decreasing phase at load level 1210 lbs.
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Figure 8. Comparison of the analytical and finite element
results for the pin-loaded or-thotropic plate.
The stress is normalized with respect to the average
bearing stress (81.9 ksi) .
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Figure 11. Comparison of the shear stress distributions
obtained in the experiment and hybrid analysis
of the pin-loaded aluminum plate (load increasing-
phase at load level 1840 ibs).
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Figure 12. Comparison of the radial stress distributions
obtained in the experiment and hybrid analysis
of the pin-loaded aluminum plate (load=1840 Ibs).
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phases of the pin-loaded aluminum plate (results
obtained using the hybrid technique).
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GENERAL SUM44ARY AND CONCLUSIONS

The initial experiments on the aluminum plate provided essential

information for the development and refinement of the general numerical

analysis of plane elastic contact problems. Specifically, the

experiments provided coefficients of friction and stress distributions

for comparative ourposes. Oisolacement data were also combined with the

finite element method to produce a hybrid solution for the pin-loaded

aluminum plate. From these interactions of experimental and numerical

studies a general algorithm for plane elastic contact problems has

emerged. This now includes the provision for both static and dynamic

coefficients of friction. The path has also been paved for the analysis

of problems involving severe deformation and fracture in anisotropic

materials.

Two new experiments have been performed on the aluminum plate and a

graphite-epoxy composite. The second aluminuq specimen was tested to

provide a closer approximation to the two-dimensional stress state

required in the analysis. A further innovation, which allowed closer

study of the stresses at the contact boundary, was the use of a zero-

thickness gratings. In conjunction with a localized hybrid analysis,

comprehensive stress distributions have been obtained for the loading

and unloading parts of the load cycle. Certain analytically predicted

behavior has been confirmed and some surprisingly large stress gradients

have been discovered.

Ideally, a comparison of the new experimental results and those

predicted from the refined algorithm should be made. Time and resource

limitations prevent a comprehensive comparison. However, the radial and

shear stresses obtained using Mesh B in Fig. 5 for a load of 1240 lb
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(with ux = 0.25 and Ld : 0.35) have been compared with those from the

second experiment on the aluminum plate in Fig. A. It may be seen that

the radial stresses are in close agreement near the point of first

contact. The agreement is less good near the end of the contact zone.

The shear stresses appear to be overestimated in the numerical aralysis.

This may be a direct result of assuming values of . and .d which Nere

larger than those operating in the second experiment. The lack of

agreement in the peak shear stresses and the departure of the radial

stresses away from the point of first contact is consistent with and a

consequence of the overestimate of the shear stresses in the numerical

analysis.

The experiment on the quasi-isotropic composite plate highlighted

important differences between it and the isotropic aluminum. Most

surprising was the difference in the shear stress distribution at the

surface of contact. Analytical studies do not oredict such differences

but other experimental studies of lesser sensitivity than moire

interferometry indicate similar inconsistencies.

The study of the composite plate included a failure analysis Nhich

used the experimentally determined displacement and stress distributions

to identify and locate the failure modes. This experiment provides

potentially ideal data for validation and assessment of the new

Eulerian-Lagrangian algorithm presented in this report.

151



% 0

CA

0 0L

LOO

W

U,,

CL a)-

E -)

ILL 4- \

0 ~E

/ 0.W

I / 0

* ssil,

* I / 152



U --

APPENDIX A

Fringe patterns for the aluminum specimen
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1) U-field, load increasing phase, P =25 lb
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2) V-field, load increasing phase, P 25 lb
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4) V-field, load increasing phase, P =250 lb
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5) U-field, load increasing phase, P =500 lb
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6) V-field, load increasing phase, P =500 lb
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7) U-field, load increasing phase, P =750 lb
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8) V-field, load increasing phase, P =750 lb
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9) U-field, load increasing p~hase, P =1000 lb

162



10) V-field, load increasing phase, P =1000 lb
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1)U-field, load increasing phase, P =1250 lb
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12) V-field, load increasing phase, P =1250 lb
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13) U-fie~d, load decreasing phase, P 1000 lb
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15) U-field, load decreasing phase, P =750 lb
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16) V-field, load decreasing phase, P =750 lb
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17) U-field, load decreasing phase, P =500 lb
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18) V-field, load decreasing pnaSe, P =500 lb
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19) U-field, load decreasing phase, P 250 lb
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20) V-field, load decreasing phase, P 250 lb
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21) U-field, load decreasing phase. P 25 lb
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22) V-field, load decreasing phase, P = 25 lb
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APPENDIX B

Fringe patterns for the graphite-epoxy plate
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2) V-field, load increasing phase, P = 20 lb
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3) U-field, load increasing phase, P 100 lb
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4) V-field, load increasing phase, P =100 lb
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5) U-field, load increasing phasE, P 200 lb



6) V-field, load increasing Qhdse, P 200 lb
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7) U-field, load increasing phase, P = 300 lb
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8) V-field, load increasing phase, 300 lb
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9) U-field, load increasing phase, P =400 lb
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10) V-field, load increasing phase, P =400 lb
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11) U-field, load increasing phase, P : 500 lb
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12) V-field, load increasing phase, P 500 lb
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13) U-field, load increasing pmase, P =700 lb

189



4*4*

V 'A

14) V-field, load increasing phase. P =700 lb
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15) U-field, load increasing phase, P =900 lb
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16) V-field, load increasi-.i ph~ase, P 900 lb
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19) U-field, load increasing phase, P 1500 lb
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20) V-field, load increasing phase, P =1500 lb
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21) U-field, load decreasing phase, P 700 lb
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22) V-field, load decreasing phase, P 700 lb
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23) U-field, load decreasing phase, P 20 lb
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